
1

Web Defacement Monitoring Tool

Project Description Document

 J.Hou

3565155

Robert Sobukwe Rd, Bellville

Cape Town, 7535

3565155@myuwc.ac.za

ABSTRACT

This report focuses on development of a tool to minimize damage

due to website defacements. The report follows the format of

historical defacement events and other studies in the same field.

The user requirements analysis states the web administrator

perspective and the requirements analysis are broken down into

system comments and software elements.

This project is sponsored by CSIR to educate users about web

defacements and cyber security awareness in general through

developing a tool to prevent such hacktivism from happening.

KEYWORDS

Web defacement, cyber security, data breach, denial of service,

Web Defacement Monitoring Tool, WDMT.

1 INTRODUCTION

The advancement of the Web and the applications inspired new

methods to communicate and share information, nearly all

businesses and organizations utilize web pages to communicate

with end-users. The Internet contains vast amount of web pages

and information, a web page is a Hypertext Markup Language

(HTML) document, typically a web site has many web pages

linked, hosted on a web server [1].

A website contains information and critical data related to the

organization, this typically gains audience from end-users and

unwanted attention from hackers. The earliest examples of

hacktivism and web defacement date back to 1996, the United

State Department of Justice web server was hacked and defaced,

hackers replaced the US Department of Justice website homepage

with a text “Department of Injustice” and display of pornographic

content [2]. More recent examples are, 2018 July 7 a report by

News24 the Presidency government website was hacked and

defaced by a hacker Black Team, the website was change with the

text “Hacked By Black Team. Sahara is Moroccan. And Morocco

is ur Lord!” [3] [4].

Web security are crucial to protect organizations in this digital

era, hackers are improving and exploiting any possible loop hole,

its therefore essential to practice and use web defacement

monitoring tools.

2 LITERATURE REVIEW

Ebot Ebot Enaw and Djoursoubo Pagou Prosper proposed a

Conceptual Appr oach to Detect Web Defacement through

Artificial Intelligence [5]. The authors discuss the use of artificial

intelligence concepts such as anomaly detection, machine learning

and inferences to detect web defacement and unauthorized access

[5]. The authors provided an intelligent way to efficiently detect

the signature (type) of a web defacement attack, the detection

algorithm is consistently self-improved [5]. The authors designed

a new architecture to learn criteria that is used to characterize

websites, through this the tool studies the behaviors of a normal

web site [5]. A web defacement trainer module was developed to

analyze previous web defacement signatures, and based on these

signatures improves the accuracy of a web defacement attack [5].

The web crawler and analyzer module work in cohesion, the result

is then compared to the result of a normal behavior module

through given criteria [5]. The detection algorithm sends an email

notification to the web administrator with the log if a web

defacement is confirmed [5].

Tushar Kanti proposed Implementing a Web Browser with

Web Defacement Dection Techniques [6]. The author discussed

through the use of detection techniques and developed a web

browser to enhance the detection accuracy of web defacement

attacks [6]. The checksum is calculated through comparison of the

current webpage with the backed-up website and if there’s a

difference in checksum, this means defacement occurred. The

difference algorithm is called when defacement is detected, the

functionality of the difference algorithm is to spot the exact

location of the defacement, comparing with the original backed up

version [6]. The web browser was modified based on Internet

Explorer, the user will see no difference while browsing, the web

browser will notify the web administrator of any detection of web

defacements [6]. The author concludes the report with a recovery

mechanism for the defaced web pages, the use of a difference

algorithm to spot the exact location of defacement and the use of a

checksum to replace the defaced html code [6].

 2

3 PROJECT PROPOSAL

Web defacement is defined as unauthorized changes to a website

such as text, company logos, images, and videos. In some cases,

the entire website is completely changed. The perpetration is

usually wanting to distribute a message (advertisement, malware

link, etc.) or they may simply make fun of the website owner. In

some cases, the defaced website may display offensive messages

or information to viewers and customers. Web defacement is

considered a trivial crime however it has the following

implication on an organization and sometimes with lasting effects:

humiliation and damage to reputation, services disruption and

information downtime and potential data breach.

The objective of the project is to prevent web defacement

through constructing a Web Defacement Monitor Tool (WDMT).

The web administrator should install the corresponding tools, the

WDMT will scan web file contents and its media, compare to the

backed-up files by the use of hashing and checksum calculation.

Detected defacement will be logged and send to the web

administrator via email in report form, the WDMT will restore the

damaged content from the backup, a further report will be sent

after the restoration, logging defacement details.

4 USER REQUIREMENTS

4.1 About the Project

The internet consists of vast amount of information, a common

way to access this information is through the website. These days

many users make use of websites, popular websites attract

unwanted attentions for hacktivism.

This project was proposed by Council for Scientific and

Industrial Research (CSIR) as a collaborative work with the

University of Western Cape (UWC) honours students. The aim of

this project is to educate the user about what is web defacement,

develop a web defacement monitoring tool and recover defaced

sites by backups, the tool developed should be automated,

identified defacement should be notified via log or screenshot in a

document report form.

4.2 User view of the Project

The web administrator regulates and maintains web systems. In

this project the web administrator must protect the website against

defacement, defacement have negative impact on an organization,

lost in public reputation, system down time and potential data

breaches.

It is essential to have counter measurements against

defacement; the objective of this project is to create a defacement

tool that automatically detects web defacement and repairs

damage content in a reasonable time.

4.3 Problem Domain

The problem domain in this project is understanding the HTML

and web hosting, the website might be host online through a

service provider, the user should be familiar with the terms and

operations needed to implement the web defacement monitoring

tool.

4.4 Expectations

The WDMT is expected to minimize damage due to web

defacement on an organization this is accomplished through

making a backed-up version of the web site. The WDMT is an

automated tool that checks the current web site with the backed-

up web site, ensuring security and quality of the web site. The

WDMT should automatically repair damaged content once web

defacement was detected, appropriate reports will be sent to the

web administrator during detection and after repair phase of the

tool.

4.5 Stakeholder Requirements

In this project, the stakeholder CSIR defined the following

requirements, the user group consists of web administrators,

technician that create and maintain websites, the WDMT must

include the following functionalities:

• Create backups of a website files contents, images, videos

and web text

• Instantly detect when a website has been defaced and notify

the web administrator

• Restore damage content in the shortest possible time.

• The mentioned functions of web defacement detecting tool

should all be automated.

Other user groups are end users that test the WDMT or visit the

web site for various information’s, these users have no access to

files for security measurements.

4.6 Limitations and Out of Scope

The WDMT doesn’t perform the following functionalities:

• Track access information of end-user, such as IP address,

MAC address and other system information.

• Reverse tracking and attempt to access end-user privacy.

4.7 User requirements for Web Administrator

The Web Administrator must do the following to ensure the

software is operated correctly:

• Web Admin must create website with media content such as

video and images.

• Install and implement WDMT.

• Using the WDMT, backup website and content with hashing,

comparing checksum method.

• Set WDMT defacement automated scan interval example: 10

minutes.

• Set profile information such as name and email.

 3

4.8 User Case Diagram

Figure 1 below shows the relationship between the Web

Administrator and the end-user; the Web administrator will

regulate the website and quality of the service while the end-user

accesses the website for information.

Figure 1: Use case diagram of the WDMT

5 REQUIREMENTS ANALYSIS

5.1 Current System

The WDMT is being developed on a Linux platform, prerequisite

software’s are Chrome or any web browser software, Python

3.5.2, GitHub and Git 2.7.4.

Figure 2 below shows the Linux environment on the right and

temporary website used to test against web defacement on the left.

Figure 2: Current system used to develop the WDMT

5.3 Functional Requirements

• The WMDT must back-up the current undefaced web site.

• The WDMT must detect web defacement attacks. Attacks

include any modification or missing of text, graphic images

or video.

• The WDMT must provide feedback in report form and email

to the web administrators. First report when web defacement

was detected.

• The WDMT must recover damage site through comparing

hashed checksums with the backed-up website.

• The WDMT must provide a secondary feedback report after

restoration of damage web sites.

5.4 UML Class Diagram

Figure 3 below shows the UML class relationship, the WDMT

will be developed under an Object-orientated programming

(OOP) approach.

Figure 3: UML Class Diagram

6 NON-FUNCTIONAL REQUIREMENTS

6.1 Performance Requirements

The WDMT scan should be automated and each scan in attempt to

identify defacement should not take longer than 5 minutes.

6.2 Operating Requirements

Compulsory software is Python 3 and Linux platform is required

to operate the WDMT.

6.3 Reliability

Reliability to WDMT is a big concern, the WDMT should be

always check input and filename to prevent human error, WDMT

 4

will prompt feedback if files of corresponding filenames are not

found.

6.4 Usability

The WDMT will be a terminal line base software, the web

administrator can interact the software using number such as 1, 2,

3 etc. Each number corresponds to a different functionality, a

menu mapping will be provided in the command menu interface

for more ease of access.

7 USER INTERFACE

Figure 4: Interface of Website and the WDMT

The web administrator is expected to create a website containing

media such as videos and images. The above figure 4 shows a

website used as a test against the WDMT.

The main interface for the WDMT is command line based, it

operates through a terminal in Linux or Bash terminal on

Windows 10. The web administrator will navigate the WDMT via

numbers, in the above figure 4, the web administrator would have

to enter 4 in the terminal to force scan any web defacements,

provided all the necessary steps are completed.

8 DESIGN

8.1 Data/Function Diagram

The WDMT main functionality can be decomposed into sub

functions, figure 5 below represents the relationship between each

function.

The WDMT will require the Administrator input for the first

functionality, the Administrator Creates Website Profile, core

information such as hash string of each file, location of each file

and Auto Scan Configuration are stored.

The second function Backup Website creates a copy of the

website and all content, this is stored in a different location for

further use.

The third function Monitor Websites happens automatically

between each period interval, the purpose is to hash a file and find

a mismatch in the hash string when comparing to the Website

Profile created in the function Create Website Profile. Once a

defaced file is detected a byte-to-byte comparison is done to find

the exact defaced location, the detail information is sent to the

fifth function to generate a Defacement Report to the

Administrator. After all defaced files are detected the WDMT

recovers damaged content through the Backup Website and a

further information log is passed onto the fifth function, the

Recovery Report is then sent to the Administrator.

The fourth function Scan for Defacement, calls the third

function to do an immediate hash comparison and proceed from

that point onwards.

The fifth function Generate Reports, this function is called by

other functions as a feedback mechanism, only if a defacement is

detected the Defacement Report will be sent, after the recovery of

damage content the Recovery Report will be sent.

Figure 5: Functional Decomposition of the WDMT

8.2 Architectural Design

The architecture looks at the High-Level Design (HLD) of the

WDMT, figure 6 below shows the high-level design of the

WDMT and the process follow.

The first section involves the administrator to either use the

terminal and command line or the GUI to create a website profile

of the target website, followed by configuring the auto scan

configurations.

The second section involves the WDMT and the target

website, the WDMT would scan the website files and compare its

hash value with the result stored in the website profile.

The third section triggers if the second section is true and the

WDMT compares line by line with the text or document file

types, other techniques will be used to compare image and media

format files.

The last section involves feedback, this is achieved by the

WDMT creating a report which is sent to the Administrator,

detailed description to what content was defaced and when the

defacement took place.

 5

Figure 6: High-Level Design

8.3 Interface Design

8.3.1 Terminal and command line. The Administrator will

interact the WDMT through the terminal and use numbers

corresponding to each menu option to trigger the different

functionalities.

Figure 7: Terminal and command line Interface

The above figure 7 shows the terminal and command line

interface. The Administrator will input for example 1 to trigger

the event function corresponding to that input, other input such as

strings and mismatch will be caught, the Administrator will then

require to input valid inputs.

8.3.2 Graphical User Interface (GUI). The Administrator may

alternatively use the graphical interface for a better experience,

the Administrator will click on a button to trigger the

corresponding event function.

Figure 8: Graphical User Interface

The above figure 8 shows the GUI of the WDMT. The

Administrator will click on the button to trigger the event

function, the GUI validates the input to a certain level, because

the Administrator is restricted to clicking.

8.4 Interface Functionality

8.4.1 Create Website Profile. The Administrator will select the

root directory of the website, the WDMT will scan all the files

and make a profile of total files, name of the html pages and

media file formats etc.

8.4.2 Set Auto Scan Configuration. The Administrator will use

this to configure the WDMT auto scan function, variables such as

waiting time between scans etc.

8.4.3 Backup Website and Content. The WDMT creates a

backup of the website from the Website Profile. Backup Website

and Content will only work if a Website Profile has been created.

8.4.4 Scan for Defacement. The WDMT will immediately scan

the website and compare the hash result with the website profile

to find any defacement. If any defacement was detected, the

WDMT will auto recover the deface content.

8.4.5 Help. The Help function explains how to use each function

and credits by the author.

8.5 Component Level Design

The component level design looks at the technical aspect to the

WDMT, below the figure 9 shows the Low-Level Design of the

WDMT.

 6

Figure 9: Low-Level Design

The main focus in low-level design is the function Hash file,

hashing a file provides a unique hashed signature used to compare

if the file has been modified, the core hashing algorithm of the

WDMT will be BLAKE2. Once defacement has been detected a

byte-to-byte comparison is performed to find the exact location of

the defaced content.

The below figure 10 shows the SHA1 hashing algorithm,

Figure 10: SHA1 algorithm

The SHA1 hashing algorithm was used during research to

compare the different speed and performance, the above example

would be applied to any object file. It is essentially important to

note that all incoming files are converted into byte objects before

updating the data chunk.

The hashing algorithm. BLAKE2 will be our main hashing

algorithm for WDMT, research show BLAKE2b, a 64-bit hashing

algorithm is slightly faster than and secure as SHA3.

Each time we compare a file or any data BLAKE2 requires

each byte object conversion of the target, each byte object is then

updated to our BLAKE2 constructor with the preset chunk size,

digest size and parameters. Once the BLAKE2 hash all the bytes

object in a file it outputs a 128-character hash signature that’s

unique to the target file. Figure 11 below shows a usage of

BLAKE2 algorithm, hashing the simple String “Hello world”,

notice the String object is converted into a byte object before

passing into the BLAKE2 update function.

Figure 11: BLAKE2 usage

 7

Figure 12: Python code of Prototype

The above figure 12 shows the Python code of the WDMT

prototype, it utilizes both SHA and BLAKE2 as its core hashing

algorithm.

The BLAKE2b algorithm is an adapted algorithm based on

BLAKE, it performs optimal on a 64-bit machine, each digest size

is 64-bit, the algorithm utilizes modern processing architecture.

The WDMT will take an object orientated approach the

Administrator creates a Website Profile that includes Website root

directory names, total amount of files, a Hash Object (created

using BLAKE2 constructor) and a long string with all file’s names

and directories, refer to Appendix B for more information.

9 PROTOTYPE

The prototype version of the WDMT is implemented by using the

following elements. The development of WDMT uses a patched-

up approach.

9.1 Hardware

The hardware elements are a computer or server are the only

requirement for the prototype WDMT. It is ideal to have a

powerful server when hosting the website and using the WDMT,

as the performance and speed of hashing is high affect by the

process and memory of the machine.

9.2 Software

The prototype WDMT will be developed on a Linux based

system, currently using the Linux Subsystem for Windows 10 for

development.

Python 3.6 and above will be used, packages from Python3

such as pyblake2 [7] library use for BLAKE2 algorithm hashing

and constructing hash object, hashlib library for other common

hashing algorithms and object, os library for directory navigation

and file extraction.

The main program of the prototype WDMT will be coded in

Python and the prototype will be tested against our own

University of the Western Cape Computer Science server,

CSUNX.

Apache2 will be used for web hosting on the local machine

during development phase and also on the CSUNX server during

testing phase.

Hyperlink references to documentation and code will be

shown below in the Appendix B.

10 IMPLEMENTATION

The WDMT is implemented by using the following elements.

10.1 Hardware

The only hardware requirement for the WDMT is a computer or

server to host the website. It is ideal to have a powerful server

when hosting the website and WDMT, as the performance is

depended on hashing speed, the process will consume a lot of

power and memory of the machine.

The Lenovo Z50-75 was used to implement and develop the

WDMT, the machine has 16GB of RAM and FX Radeon R7

processor, later stages the same machine will be used to test the

WDMT. Internet connection such as LAN connection is highly

important.

10.2 Software

The main operating system used to develop the WDMT is on a

Windows OS (64 bit) machine, an alternative Linux OS is used

for testing.

Python 3.7.3 was used to develop and/or above is required to

operate the WDMT, packages from Python3 such as pyblake2 [7]

library use for BLAKE2 algorithm hashing and constructing hash

object, hashlib library for other common hashing algorithms and

object, os library for directory navigation and file extraction.

The GUI is created by using the library tkinter in Python3.

The WDMT is coded in Python and operation testing will be

tested on the University of the Western Cape Computer Science

server, CSUNX.

Apache2 is used for web hosting on the Lenovo Z50-75

during development phase and moved onto CSUNX server during

testing phase.

10.3 Functions, Methods and Classes

The WDMT uses a functions and methods to breakdown the

functionality and achieve real time monitoring, below are

descriptions of the core functions and methods.

The function Create Website Profile is decomposed into

several sub functions. Initially the WDMT requires the web

administrator to input to locate the website site root directory to

backup, once a valid root directory was chosen, the WDMT uses

an iterative method and loops through all folder, folders are stored

in a list in order of alphabetical, each file is then hashed and the

digest is stored in a dictionary.

The function Set Auto Scan Configuration is a simple input

function that request the web administrator to input information

about the automate scan settings, the web administrator is required

to enter the email address for reports to be sent, an integer in

seconds intervals between scans.

The function Back Up Websites and Content is dependent on

the function Create Website Profile, if the Create Website Profile

function has not been executed an alert will pop up and warn the

web administrator to complete the function, the web administrator

will select the backup location of the website. Once the WDMT

verifies all files are scanned and hashed, the back up sub function

will commit, writing all files and its location along with the

corresponding hash digest into a file. A message is popped up

showing a summary of how many folders and files backed up and

the backup location.

The function Scan for Defacement requires all the above

functions to be completed and executed first, the initial run of the

scanning process will happen immediately. The process calls

several sub functions, first counting the files and folders, the

https://pypi.org/project/pyblake2/
https://pypi.org/project/pyblake2/
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://httpd.apache.org/
https://httpd.apache.org/
https://pypi.org/project/pyblake2/
https://pypi.org/project/pyblake2/
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://httpd.apache.org/
https://httpd.apache.org/

 8

WDMT checks the files and folders correspond to the back up

versions by hashing the files and comparing the hash digest with

the stored digest, the WDMT utilizes a dictionary for faster

operations. If a file is found to be defaced, the sub function byte-

to-byte comparison is executed finding which line the defacement

occurred, these details are logged and will be send to the web

administrator as defacement report, after the comparison process,

the file is replaced from the back up directory. If a file or folder is

missing, the corresponding files and folders are retrieved from the

back up directory, similarly if the WDMT detects extra files not

found with in the back up directory, such files are removed, the

details are logged and send to the web administrator, this

secondary report is the recovery report, both reports are sent to the

web administrator via email communication.

The function Help opens a new interface with a list of

functions and description of how each is to be executed. Author

information is also stated for feedbacks, bug and fault report.

10.4 Testing

During the current stage of the development, limited testing was

done, focusing on the main functions.

The GUI interface was tested and ensure the correct messages

would pop up for the web administrator, these include the alert

messages should pop up when a required function has not been

completed and confirmation messages after an operation, testing

was also done to ensure transition between functions and

processes ran smoothly. The below figure 13 shows testing and

examples of GUI transition and pop ups.

Figure 13: Testing GUI transition

The function Back Up Website and Content is dependent on

the function Create Website Profile, testing was done to ensure

the web administrator choose the location of the website directory

and the back up directory. The result of executing these two

functions is a back ed up file folder along a Website Profile

Object, the figure 14 below shows successful Website Profile

Object created after making up a website.

Figure 14: Testing Website Profile Object

The files are separated into 2 sections, first the folders

sections along with the path location and lastly the name of the

folder. The second sections are location of the file, ending on

name of the file a consent “#” as a separator and the hash digest as

show above figure 14.

The testing above shows that the core functions of the WDMT

is operable and fulfils its requirements meeting a software quality

assurance standard.

REFERENCES

[1] M. Masango, F. Mouton, P. Antony and B. Mangoale, “Web

Defacement and Intrusion Monitoring Tool: WDIMT,”

September 2017.

[2] D. Dorothy, “Georgetown Journal of International Affairs,”

The Rise of Hacktivism, 2015 September 2015.

[3] M. Mxolisi, “Presidency website up and running after hacking

attack,” News24, 7 July 2018. [Online]. Available:

https://www.news24.com/SouthAfrica/News/breaking-

presidency-website-hacked-20180707. [Accessed 6 March

2019].

[4] N. Mphathi, “SA Presidency website hacked,” Independent

Online (IOL), 11 July 2018. [Online]. Available:

 9

https://www.iol.co.za/dailynews/news/sa-presidency-website-

hacked-15950026. [Accessed 6 March 2019].

[5] E. E. Enaw and D. Pagou Prosper, “A Conceptual Approach to

Detect Webdefacement Through Artificial Intelligence,”

International Journal of Advanced Computer Technology

(IJACT), vol. 3, no. 6, pp. 77-83.

[6] K. Tushar, “Implementing a Web Browser with Web

Defacement,” World of Computer Science and Information

Technology Journal (WCSIT), vol. 1, no. 7, pp. 307-310,

2011.

[7] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn and W.

Christian , “hashlib — Secure hashes and message digests,”

The Python Software Foundation, 27 09 2019. [Online].

Available: https://docs.python.org/3/library/hashlib.html.

[Accessed 27 09 2019].

 1

APPENDIX

A Project Plan Gantt Chart

 1

B BLACKE2b Algorithm

Algorithm BLAKE2b

 Input:

 M Message to be hashed

 cbMessageLen: Number, (0..2128)

Length of the message in bytes

 Key

Optional 0..64 byte key

 cbKeyLen: Number, (0..64)

Length of optional key in bytes

 cbHashLen: Number, (1..64)

Desired hash length in bytes

 Output:

 Hash

Hash of cbHashLen bytes

 Initialize State vector h with IV

 h0..7 ← IV0..7

 Mix key size (cbKeyLen) and desired

hash length (cbHashLen) into h0

 h0 ← h0 xor 0x0101kknn

 where kk is Key Length (in

bytes)

 nn is Desired Hash

Length (in bytes)

 Each time we Compress we record how

many bytes have been compressed

 cBytesCompressed ← 0

 cBytesRemaining ← cbMessageLen

 If there was a key supplied (i.e.

cbKeyLen > 0)

 then pad with trailing zeros to

make it 128-bytes (i.e. 16 words)

 and prepend it to the message M

 if (cbKeyLen > 0) then

 M ← Pad(Key, 128) || M

 cBytesRemaining ←

cBytesRemaining + 128

 end if

 Compress whole 128-byte chunks of

the message, except the last chunk

 while (cBytesRemaining > 128) do

 chunk ← get next 128 bytes of

message M

 cBytesCompressed ←

cBytesCompressed + 128 increase count

of bytes that have been compressed

 cBytesRemaining ←

cBytesRemaining - 128 decrease count

of bytes in M remaining to be

processed

 h ← Compress(h, chunk,

cBytesCompressed, false) false ⇒

this is not the last chunk

 end while

 Compress the final bytes from M

 chunk ← get next 128 bytes of

message M We will get cBytesRemaining

bytes (i.e. 0..128 bytes)

 cBytesCompressed ←

cBytesCompressed+cBytesRemaining The

actual number of bytes leftover in M

 chunk ← Pad(chunk, 128) If M was

empty, then we will still compress a

final chunk of zeros

 h ← Compress(h, chunk,

cBytesCompressed, true) true ⇒ this

is the last chunk

 Result ← first cbHashLen bytes of

little endian state vector h

End Algorithm BLAKE2b

