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ABSTRACT 
A brief overview of the importance of time-energy measurements 
in the field of particle physics. And the uncertainty given by the 
Heisenberg uncertainty principle to the measurements being 
made. A discussion about the software which will be developed to 
allow for the accurate extraction of time and energy data as well 
as the analysis tools which will be developed to process this data. 
Finally resulting in an experiment at iThemba Labs which this 
software will be crucial in the verification of the detector process 
being developed. 

CCS CONCEPTS 
• Computer systems organization → Embedded systems; 
Data Acquisition → Analysis; 

KEYWORDS 
Digital Pulse Processors, Data Acquisition, Spectrum Analysis, 
digital partial detector processing. 

1 INTRODUCTION 
 
C.W Fabjan defines particle detectors as “Particle detectors are 
instruments used to measure the kinematic properties of particles 
and quanta” [1]. The kinematic properties are mass, position 
velocity and acceleration. These properties can be derived from 
the characteristics of detection events. Namely the energy of a 
particle and the time at which an event occurs. 
Once an event has occurred it is registered in the Data Acquisition 
(DAQ) system and stored on a computer via an interface program. 
For this use case a software package called PAASS-LC [2] will be 
used as it provides both acquisition and analysis frameworks. 
However, this package is not designed for the specific use case of 
time and energy signal retrieval from multiple detectors 
simultaneously to register individual events. But rather it is 
designed in a general manner that allows it to be extended by a 
researcher to accommodate for their specific use case. 
My Honors project will be the development of a tool using the 
PAASS-LC frameworks to retrieve time stamped energy events 
from the DAQ system. The data retrieved will allow for the time 
calibration of the particle detectors. During the decay of various 

radioactive isotopes, a gamma ray pair is produced which are then 
emitted in opposite directions. This time calibration is essential in 
the measurement of these decay events, as it allows for the 
measurement of the position of the decayed particle with respect 
to the Heisenberg uncertainty principle. This position with 
coupled with the energy of the emitted gamma rays can be used 
to determine the various other kinematic properties of the 
particle. 

2 COMPUTATIONAL DETAILS 

2.1 Time Calibration 
 
To calibrate the detectors a radioactive source is placed a 
predetermined distance form either apposing detector. Then by 
measuring the precise time of arrival of the gamma ray emitted 
during a decay it is possible using newtons equations of motion to 
calibrate the detector in time with respect to these positions.  

 
Figure 1: Diagram Depicting the calculation of the position 
of a radioactive point source in 1D space 
 
If the time of an event at Detector A occurs at tA and the event at 
Detector B occurs at tB it is possible to determine the position of 
the particle between these detectors using Newtons Equations of 
motion. 
This which gives the Equation displayed in Figure 1: 
𝑥 =  

𝑣

2
  (𝑡𝐴  −  𝑡𝐵)       Eq (1) 

 

2.2 Energy Calibration 
 



 

 
 

The energy calibration is accomplished by using a radiation point 
source whose emitted energy spectrum is well defined.  
 

 
Figure 2: An Example Energy Spectrogram using a variety 
of radioactive sources [3] 
 
 
Table 1: A table representing the energy levels of the 
various photopeak’s in Figure 2. 

 
 
Figure 2 (for explanatory purposes) is a great example of a 
calibration spectrum. Using the values from [3] represented in 
Table 1 the energy in keV will need to be mapped to the channel 
number listed on the x-axis of Figure 2. This is accomplished by 
plotting the graph of channel number to energy. Then finding the 
line of best fit for this data. As the channel numbers n of a detector 
are approximately proportional to the energy E being measured 
the points on the graph will follow a quadratic relationship at high 
energies. The calibration step is reduced to the process of solving 
for the constants: a, b, c in the equation  
 
𝐸(𝑛)  =  𝑎 +  𝑏𝑛 +  𝑐𝑛2       Eq (2) 
 
This can be accomplished using the method of chai-square defined 
in [4].  

𝑥2  =  ∑ (
𝐸(𝑛) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑛)

√𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑛)
)

𝑛𝑓

𝑛𝑖
      Eq (3) 

 
Where ni is the first channel number, nf is the final channel 
number, E(n) is the energy predicted by Eq (2), Expected(n) is the 
expected energy at the channel number n.  
Eq (3) is used by varying the constants a, b, and c until the value 
produced by chi-shared is the closest to 1, making this an 
optimization problem. Various optimization algorithms will be 
implemented and tested including Global Search, Multi Start, and 

Pattern search. They will be evaluated, and the optimal solution 
will be used in the project.  

3 FEATURES AND METHOD 

3.1 Tool To Be Built 
 
The resulting system will be built upon the PAASS-LC tool. It will 
expand on both the acquisition and analytical frameworks 
provided by the tool.  

• It will use PAASS-LC as a data recording program to 
interface with the DAQ.  

• The program will then calibrate the energy spectrum 
incident on the detectors using the method of chi-
squares in Eq (3). 

• The subsequent events incident on the calibrated energy 
channel will then be recorded with its precise time 
stamp. 

• Using this time stamp only the events occurring within 
a specific time frame threshold will be recorded. 

• Using Eq (1) the precise position of the events will be 
determined, and the various other kinematic properties 
will be determined from the position. 

Initially this system will be built as a processer within the 
PAASS-LC tool. Then a modern user interface will be 
developed for ease.  

3.2 Development Cycle And Goals 
Even though there is a clear and well-defined problem which 
needs to be developed, as with any software project there is still 
space for the requirement to change and as such an Agile 
approach towards the software engineering cycle will be followed. 
With regular standup meetings with my mentor as we discuss the 
changing nature of the project as we learn more about the 
capabilities of the PAASS-LC framework.  
The major goal of this project is to provide scientists with an easy 
to use data acquisition and analysis system which they may use 
for coincidence experiments but may easily be extended to various 
other experiments as well. 

4 USER REQUIREMENTS 

4.1 Data Acquisition 
This process is handled by poll2. A tool supplied by the PAASS-
LC framework and will not be built by this project. 

4.2 Data Analysis 
Poll2 will acquire data and store it in in a ldf file. UTKscan a tool 
supplied by PAASS-LC will decode this file and supply the data to 
my program. This raw data will be energy calibrated as discussed 
in section 2.2 above. This calibrated data will then be will then be 



 

 
 

gated with respect to time to find the relevant coincident events. 
This coincident data will then be graphed using the ROOT 
programming language.  

4.3 Interface 
This be a web application where a user may submit their ldf file. 
They may also record a new ldf file using the poll2 tool. They will 
then process this recording using the coincidence processer 
written for this project. The resulting graphs will be displayed on 
the interface and root files will be available to download to their 
respective computers for further analysis. 

4.4 Configuration 
The UTKscan tool is configured using an xml file. The users will 
be allowed to submit their own configuration files. Or users will 
be allowed to use a default config file supplied by the interface.  

5 REQUIREMENTS ANALYSIS 

5.1 Functional Requirements 
The user must be able to record radioactive decay events using the 
PAASS-LC framework which is designed to be function using the 
pixie16 data acquisition system. Data should be recorded using 
NaI scintillator detectors. Data will need to be analyzed, 
generating graphs which are both calibrated in energy and 
showing only events which coincide with one another. 

5.2 Configurations 
Configuration files will need to be able to set 

• The current channels to monitor for data. 
• The current slot the pixie16 card is installed in. 
• The parameters regarding the coincidence data being 

analyzed. 
• Time calibration parameters. 
• Time window size 
• Energy data to be used when generating coincidence 

spectrograms 
• Calibration data should be supplied 
• Calibration constants. (Calibration will not be redone) 
• Data required for the Calibration in section 2.2 above 

5.3 Data Output 
 
Graphs generated should be displayed on the interface. Such as: 

• Spectrums for each detector individually 
• Spectrums for coincidence data 

 

As well as the data used for generating these graphs as a ROOT 
file, which then may be downloaded to the experimenter’s 
computer for further analysis.  

6 PROJECT PLANS 
 
Term 1: 

• Documentation 
• Gathering requirements 
• Proposal 

Term 2: 

• Prototyping 
• Delivery of proof of concept 
• Working coincidence processor 

Term 3: 

• Web interface implementation 
• Testing 
• Feedback from stakeholders 

Term 4: 

• Implementation of feedback 
• delivery of final code 
• testing of code at IThemba labs for coincidence 

experiment 

7 APPLCATIONS 

7.1 Nuclear Medicine 
 
Positron emission tomography (PET) is a powerful and non-
invasive method of imaging physiological processes occurring in 
the body. The time of flight techniques spoken about in this paper 
are already being used in modern PET scanners as, “In the newer 
generation of PET detectors the resolution of the tomographic 
image is improved by determination of the annihilation point 
along the line-of-response [5].” This method is powerful as it 
reduces the noise along the line-of-response. This noise reduction 
occurs as the double event from the single particle decay reduces 
background noise as events recorded along the line-of-response 
which do not occur within a certain time frame are ignored, thus 
reducing the false positives caused by background radiation.  

8 DESIGN 

8.1 Data/Class Design 
There are various data models used by both the web front end and 
only a single data model used by the coincidence processor 
8.1.1 Coincidence Processor Data Model. The eventProc model is the 
most important, yet simplest, data object in the entire project. This 
object has these following fields 
 



 

 
 

{ 
 EnergyChannel : double, 
 TimeInClockCycles : double, 

Slot: int, 
Channel: int 

} 
Both EnergyChannel, and TimeInClockCycles fields need 
processing to be meaningful in the context of this processor code. 
The energy field needs to be calibrated using the method described 
in section 2.2. The time field needs to be calibrated using the 
frequency of the XIA data logger, which in our case is a 250MHz 
system. Which means that each clock cycle has a period of 4ns. 
The Slot and Channel field keep track of the specific detector 
being used as 2 detectors can be attached to different pixie-16 
cards inserted into the same XIA cage. 
8.1.2 Web Interface. Some metadata about an experiment is 
recorded by the webpage and is structured according to the 
metadata model. 
{ 
 ExperimenterName: String, 
 ExperimentDate: DateTime, 
 ExperimentName: String,  
 ExperimentShortDescription: String, 
 ExperimentLongDescription: String, 
 
} 
8.1.3 Coincidence Processor Class Description. The Coincidence 
processor consists of a single class for detecting coincidence data.  
The Class Diagram can be found below. 

 
Figure 3: Class Diagram depicting the functions and 
variable of the NaICoincidenceProcessor class. 

8.2 Web Front End Data Model 
The web front end will have various data models, which describe 
the various states of the stages of the application. The first will be 
the model to manage the configuration, datafile pair. 
{ 

ConfigurationFilePath : string, 
DataFilePath : string, 
DestinationFilePath : string, 
State : IState, 

} 
The DataFilePath is the location of the data file, after being 
uploaded to the server, which is the raw data file that will be 
processed. The ConfigurationFilePath is the location of the 
configuration file, after being uploaded to the server, which is 
responsible for telling PAASS-LC which processors to be used. 
The DestinationFilePath will be used to tell PAASS-LC where to 
store the generated root files. The state maintains the state of the 

current run of the PAASS-LC program, the state field calls the 
IState object which looks like 
{ 
 IsRunning : boolean, 
 HasError : boolean, 
 OutputMesasge : string, 
} 
IsRunning tells the front end if the PAASS-LC program is still 
executing. HasError tell the front end if the PAASS-LC program 
has run into an Error and output message tells the front end the 
messages given by the PAASS-LC program.  
 
 

8.3 Architectural Design 
The Architectural design of this application is built to facilitate 
the flow described by the interface design. The project will be built 
in two parts. 
 
8.3.1 The Coincidence Processor. The coincidence processor will be 
built into PAASS-LC as all other processor codes are for this 
framework. This allows me to leverage the power of this Package 
such as reading captured data, and easily plotting graphs. 
As PAASS-LC sends each individual recorded event to our 
processor code we will need to have an external store of events to 
accumulate all events which are found.  
After this point it will become possible to search for events which 
are in coincidence. An event in coincidence must be an event 
found at exactly 2 detectors and these 2 events must arrive at each 
detector within a specific time window of one another. The Time 
window as well as the detectors pairs being monitored should be 
set in the configuration file.  
 
8.3.2 The Web Front End. The web front end will be used to 
facilitate the easy flow of data from capture to processing and 
finally to the retrieval of human readable data. The front end will 
do absolutely no processing. 
The web front end will use a NodeJS, express, webserver to allow 
an experimenter to upload a configuration file as well as the raw 
experiment data. NodeJS also allows for a program to execute 
programs using Linux terminal commands. This is important as it 
will allow for the PAASS-LC framework to be called. It also allows 
for files to be read and be sent back to client devices.  
I chose to have a Web front end as it allows many experiments to 
interact with DAQ stack using their own computers while also 
making it possible for physicist with a minimal understanding of 
the Linux environment to still interact with this tool.  

8.4 Interface Design 
The usage of the DAQ stack Coincidence processor will follow a 
logical flow. This will flow in the manner described in number 
form below. The below flow is related directly to using the 
coincidence processor. 

1. The user will upload the configuration and data files. 
2. PAASS-LC will call the corresponding processors 

specified the configuration file.  

                       

                                            
                                                                                      
                            
                         
                            

                 



 

 
 

3. When the coincidence processor is called the events 
coming from the detector will be stored in the event 
store component. 

4. once all the events from the current run has been stored 
in the event store the time coincidence processor will 
find all events which are in coincidence. 

5. PAASS-LC convert the plots generated in the 
coincidence processor to a .root file which can then be 
downloaded from the processed file download 
component. 

6. While the user is waiting the web, front end will display 
the loading component to indicate the file is currently 
being uploaded or the file is currently being processed 

 

8.5 Component Level Design 
The DAQ stack Tool will be built using the PAASS-LC framework 
to do coincidence detection. This will require the development of 
a small set of components to be developed. This will be both for 
the core coincidence detector code, as well as the web front end. 

1. Coincidence processor 
a. Event store 
This contains information about each of the events 
given by the particle detector. 

b. Time coincidence processor 
This determines if 2 events have arrived at the 
different detectors in coincidence 

2. Web front end 
a. Configuration, and data file upload 
This tells PAASS-LC what the data is and how to 
process it. 

b. Run Processor 
This component initiates PAASS-LC using the 
information provided in a. 

c. Processed file Download 
This allows the end user to download the processed 
data files in a .root file format 

d. Loading component 
This is used to block the user from initiating 
another execution of the PAASS-LC program while 
simultaneously informing the end user that the 
PAASS-LC program is currently processing their 
data. 

9 PROTOTYPE 

9.1 Processor Code 
For this project a prototype has been developed to demonstrate 
the ability of the coincidence processor. This processor takes data 
from precisely 2 detectors and searches for 2 events which have 

been detected in coincidence. It then plots the energy spectrum of 
the coincidence events using the energy given by the first 
detector.  

9.2 Hardware 
The XIA system is setup to use the pixie16 data acquisition 
modules. These modules record data coming from 2 NaI 
Scintillator detectors. These detectors monitor the Gama rays 
emitted during the radioactive decay of Co60 

9.3 Software 
A spectrogram is generated for each detector which can be found 
in Figure 4.a and 4.b and a coincidence spectrogram is generated 
from events which occurred within a certain time window of each 
other. This can be found in Figure 4.c 
A positive outcome for this experiment is that a spectrogram with 
the same shape as that of either detectors but also with having 
fewer events than either detectors would have respectively. 
For this prototype I noticed an issue with the way that the PAASS-
LC framework was interpreting data that was coming from our 
particle detector. This led me to investigate the issue and 
ultimately, I got in contact with the developers of this program 
and managed to fix the issue and this bug was fixed in the latest 
published version of PAASS-LC. 

 
Figure 4.a: A energy spectrogram for the detector to the left 
of the radioactive source. (counts / channel) 

 
Figure 4.b: A energy spectrogram for the detector to the 
right of the radioactive source. (counts / channel) 
 



 

 
 

 
Figure 4.c: A energy spectrogram for the coincidence events 
happening between Figure 4.a and Figure 4.b.  
(counts / channel) 
 
For my prototype an experiment was run in the physics building. 
The experiment resulted in the creation of Figures 4.a and 4.b. Our 
coincidence code was able to generate Figure 4.c using a timing 
window of 1ms and using the energy channel defined by the 
detector attached to ch1. Therefore, the pattern of the 
spectrogram follows that of Figure 4.a. 
 

10 IMPLEMENTATION 

10.1 Software And Hardware Requirements 
10.1.1 Software for processor code. The software tools used for this 
project is extensive. The main framework used is PAASS-LC 
which relies on the root programming language developed at cern. 
Root is used as “It provides all the functionalities needed to deal 
with big data processing, statistical analysis, visualization and 
storage.” [6] Root is built using make and is written in c/c++, 
therefor the gcc compiler is required. It uses the environment 
scripts to manage the installed system therefor these environment 
variables were sourced at boot. PAASS-LC is distributed through 
GitHub therefor the git version control tool is needed. PAASS-LC 
is built using CMake and compiled using make. PAASS-LC 
communicates with our pixie-16 system using a PLX controller 
therefor a PLX SDK is needed. The developer of PAASS-LC 
supplies the drivers for this system through his GitHub profile. 
The PLX controller service is managed using the popular Linux 
tool systemd. The XIA api tool is used to communicate with the 
pixie-16 system through the PLX controller and is used with the 
xia firmware. 
For the  
10.1.2 Software for web interface. The web interface is built using 
the react web framework. It is written using the typescript 
language. Material-UI is used to provided pre-styled web 
components such as buttons and text fields. Storage is provided 
by a json file. Both the frontend and backend are hosted using 
node server. Communication between the frontend and backend 
is managed using the axios library. Graphs are visualized using 
the plotly.js plotting library. File uploads are allowed using react-
dropzone. The frontend is designed to be viewed using the Firefox 
web browser. Styling is accomplished using css. The backend api 
is hosted using the express web framework. Filesystem 
management is handled by the fs package and time is managed by 
the moment package. React router is used to manage the multiple 

webpages, as react is designed for single page web apps. All code 
written for this project is done using the Visual Studios Code IDE. 
All code is shared using git. 
10.1.3 Hardware. The processing code, backend and frontend is 
hosted using a server located in the MANDELA lab. The server is 
connected to the pixie-16 system using a PLX controller. The 
pixie-16 system receives signals from 2 NaI scintillator gamma 
detector. A High Voltage power supply is used to bias the 
detectors. A pulsar is used for testing and produces idealized 
waveforms for signals coming from the NaI detector. An 
Oscilloscope is used to study the waveform of the signal coming 
from the NaI detectors to ascertain the properties required by 
PAASS-LC for signal processing. 

10.2 Functions Methods And Classes 
10.2.1 Processor Code. The Event model described in section 8.1.1 is 
implemented in the header file NaICoincidenceProcessor.hpp. All 
coincidence processing occurs in the NaICoicidenceProcessor.cpp 
file. As both files are experiment processor codes, they are stored 
in the experiment processor directories within PAASS-LC. The 
histograms for the start, stop detectors and the coincidence data 
is registered with root in the DeclarePlots method. The processor 
tells PAASS-LC that it is expecting data from a NaI scintillator 
detector in the SetAssociatedTypes method. All processing is done 
in the Process method.  The event data is given by PAASS-LC 
using a vector. Therefor the events from the start and stop 
detectors is separated into 2 vectors of type eventProc. Then a 
loop is used to get elements from both vectors and the time 
difference is compared. During the comparison stage the data is 
written to the root histograms as well as a text file which is 
displayed in the web interface. 
10.2.2 web interface. As the project uses the react framework it 
follows the standard react file structure. Images are stored in the 
asset’s directory. The process, display and history webpages are 
stored in the module’s directory. Components which are generic 
between pages are stored in the components directory and 
components which are specific to a page are stored in the same 
directory as its corresponding module. File upload for data files 
and the configuration panel for PAASS-LC are done in the process 
webpage. After the backend processes the data file. Data will be 
added to the history page. The history page lists all past 
experiments and a specific experiment with their metadata can be 
visualized in the display page.  In the history page all experiments 
are displayed in Cards displaying ExperimenterName, 
ExperimentDate, and ExperimentShortDescription, as well as the 
plot for the histogram recorded for that experiment. The 
histograms are rendered by the component histogram. The 
visualize page is used to display all the data available on the 
history page but also shows the ExperimentLongDescription and 
allows the user to download the processed root file aswell as the 
raw data file used to generate it. The frontend and backend 
communicate using HTTP post and get requests. All 
communication from the frontend is facilitated by a services class 
called communication.ts located in the services directory.  
10.2.3 backend. All endpoints for express is handled in the index.ts 
file. Each operation is managed by separate endpoints. The 
endpoint processExperiment is used to run the coincidence 
processor code. It executes PAASS-LC and stores the data in the 



 

 
 

processed directory. All raw experiment data is stored in the 
experimentData directory. All metadata for the coincidence data 
is stored in the DB.json file. Interactions with the file system occur 
using the fileManagement class and interactions with the DB.json 
file occur using the storage class. 

10.3 Limited Testing 
10.3.1 Processor Code. To test CFD triggering we plotted the start 
vs stop times of our events which were in coincidence to measure 
how well the technique would benefit the project.  

 
Figure 5.a: Start time vs stop time. Start time increasing to 
the left. Stop time increasing upward. Experiment was run 
for 3000 seconds. Using CFD triggering. 
 

 
Figure 5.b: Ideal graph for the Start time vs stop time. Start 
time increasing to the left. Stop time increasing upward. 
Experiment was run for 10 nano seconds. Using CFD 
triggering. [7] 
As the Figure 5.a is incredibly linear while Figure 5.b is less so 
proving that there is an issue using CFD triggering. This graph 
shows us that there is likely a feedback loop occurring in the 
system. Under closer inspection it was found that the signal traces 
recorded by PAASS-LC we far too short. The trace was not long 
enough to fall back to the ground state. Due to its long signal 
decay time of the NaI detector. As the entire trace length is needed 
for the CFD algorithm to model the trace, it was decided that we 

use simpler leading-edge triggering despite its lower time 
resolution.  
A Coincidence experiment was run, and a spectrogram of the start 
time subtracted from the stop time spectrograph was generated.  

 
Figure 6.a: Start time subtracted from stop time. Time 
increasing to the right. Amount of start time subtracted 
from stop time increasing upwards. 

 
Figure 6.b: Start time subtracted from stop time. Time 
increasing to the right. Amount of start time subtracted 
from stop time increasing upwards. 
While a gaussian distribution was expected figure 6.a clearly 
shows that there is an issue with the data being collected from the 
detectors. The trace length was subsequently lengthened, and the 
leading-edge trigger threshold was optimized during the 
acquisition phase. This new experiment data is then processed 
resulting in the gaussian distribution observed in Figure 6.b. 
“Because of the usually unknown processing times of the 
electronic components, it can hap-pen that the logic signals do not 
reach the coincidence unit simultaneously, even though the two  
gammas  reached  the  detectors  at  the  same  time.” [8] As the 
gaussian is not centered at zero it shows that there is a signal delay 
between the start and stop detectors of approximately 320 ns. 
Therefor coincidence data can now be processed. Using this 
known time delay. 
10.3.2 Web Interface. The web interface is far less complicated and 
only requires testing the file upload. This is done by uploading 
configuration files of incorrect file formats. The graphs generated 
by the processing code will always generate data in a standard 
format and therefor testing the plotting of data files will not be 
required. Also, the coincidence processor code is run both 
manually as well as using the web front end to verify consistency 
between the 2 methods. 
 
 



 

 
 

11 CONCLUSIONS 
The tool that we will be developing has numerous applications in 
the fields of not only particle physics but also Nuclear medicine. 
This tool will be developed throughout the year and will be tested, 
and its operation be verified in an experiment run at iThemba labs 
later this year. It will consist of the modification of an existing 
widely used scientific tool. It consists of interfacing with 
embedded systems, and FPGA’s. Various modern Optimization 
Algorithms will be implemented and studied throughout this 
development cycle. The interface will use modern web 
frameworks to build a high performance and easy to use fully 
capable digital data acquisition system. The prototype created for 
the initial phases of this project provides promising results with 
respect to the viability using the hardware stack for coincidence 
experiments. Future experiments and optimization should 
improve this method greatly such as improved timing resolution 
of the detector and higher frequency data acquisition hardware. 
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