
DAQ Stack
Coincidence Processor

For XIA Pixie16 Data Acquisition System

Kyle Leon Jordaan 3538638

Term4

Supervisor : Dr Michael Norman (Computer Science)

Co-supervisor : Prof Nico Orce (Physics)

Mentor: Dr Kushal Kapoor (Physics)



DAQ System

 A Gama ray detector has been bought by the MANDELAB in the 

physics department. 

 This detector has been setup and development is underway to 

acquire the data coming from this detector setup as well as 

processing it for future experiments by the scientists. 

 This system will ultimately be used in the development of a PET 

scanner. For this reason, the system is needed to identify 

coincidence gamma ray data.



Testing Background

 Ensures the DAQ stack Platform conforms to the design specification

 Verified by means of user testing

 Helps ensure the stability of the platform



Design Specification

 Uses PAASS-LC for data Acquisition and processing

 Generates a time spectrum for the purpose of time calibration

 Threshold time calibrated events to find events in coincidence

 Generate the energy spectrum of the coincidence events

 All analysis occurs within a user-friendly web interface



Testing Strategies

 User testing

 PhD students who use data acquisition as part of their thesis

 Provide feedback on the application, if it abides by the 

requirements and future improvements

 Integration testing

 Occurs at an API level

 Ensures the features of the API and data Processing are working as 

expected

 Stress testing

 Ensures that the system will not fail under abnormal conditions



Test design

 User testing

 Users are given access to DAQ stack

 The users process an experiment and download the results

 The users comment on if the User requirements have been followed

 Feedback is given as to what could be improved

 Integration testing

 HTTP requests are made to the API using a Python client

 Responses and side effects are monitored by the Python client

 Alerts the developer if an error occurs



Test design

 Stress Testing

 A virtual machine with limited system resources is used to 

simulate an abnormal situation

 Large experiment files are uploaded to the system

 Processing duration is recorded

 System crashes and Web UI crashes are recorded



Test Cases

 User testing

 Users are provided data files for simplicity

 Users are instructed on how to write the configuration file

 Integration testing

 An experiment is processed using the web UI.

 If the results are satisfactory the response is recorded and stored for the Python test client

 Also the results of the history and details screens for 4 predetermined experiments are 

recorded and used for validation

 Stress testing

 Limits are set on the amount of ram and storage in a virtual machine



Test report

 User testing

 Users provided positive feedback on the usability experience of the platform

 They felt the requirements were met

 They suggested future improvements of

 Improving UI style

 The ability to record data

 User authentication

 Extend processor code to use multiple detectors as apposed to simply 2



Test report

 Integration testing

 Stability issues arose when supplying nonstandard data

 Incorrect type formatting or broken XML config files

 This was fixed by blocking nonstandard requests and validating config files

 Stress testing

 Various performance issues arose during the stress testing phase.

 Files larger than the available storage capacity caused the system to crash.

 File sizes are now limited to 1 Gb smaller than the available capacity

 Large amounts of graphs on the history tab of the UI cause the front end to crash

 Nictitating the need for pagination of experiments



Conclusion

 During the development of the DAQ stack platform an issue was discovered in 

the PAASS-LC platform which caused it to crash when supplied with our data. 

This was brought to the attention of the PAASS-LC developers and has since 

been rectified

 DAQ STACK is a platform for the simple processing of experiment data. 

 It can be easily extended upon given its modern language use and well-

structured code base.

 Integration Testing provides future developers with a means of discovering 

faults they may have introduced into the code base


