
DAQ Stack
Coincidence Processor

For XIA Pixie16 Data Acquisition System

Kyle Leon Jordaan 3538638

Term4

Supervisor : Dr Michael Norman (Computer Science)

Co-supervisor : Prof Nico Orce (Physics)

Mentor: Dr Kushal Kapoor (Physics)



DAQ System

 A Gama ray detector has been bought by the MANDELAB in the 

physics department. 

 This detector has been setup and development is underway to 

acquire the data coming from this detector setup as well as 

processing it for future experiments by the scientists. 

 This system will ultimately be used in the development of a PET 

scanner. For this reason, the system is needed to identify 

coincidence gamma ray data.



Testing Background

 Ensures the DAQ stack Platform conforms to the design specification

 Verified by means of user testing

 Helps ensure the stability of the platform



Design Specification

 Uses PAASS-LC for data Acquisition and processing

 Generates a time spectrum for the purpose of time calibration

 Threshold time calibrated events to find events in coincidence

 Generate the energy spectrum of the coincidence events

 All analysis occurs within a user-friendly web interface



Testing Strategies

 User testing

 PhD students who use data acquisition as part of their thesis

 Provide feedback on the application, if it abides by the 

requirements and future improvements

 Integration testing

 Occurs at an API level

 Ensures the features of the API and data Processing are working as 

expected

 Stress testing

 Ensures that the system will not fail under abnormal conditions



Test design

 User testing

 Users are given access to DAQ stack

 The users process an experiment and download the results

 The users comment on if the User requirements have been followed

 Feedback is given as to what could be improved

 Integration testing

 HTTP requests are made to the API using a Python client

 Responses and side effects are monitored by the Python client

 Alerts the developer if an error occurs



Test design

 Stress Testing

 A virtual machine with limited system resources is used to 

simulate an abnormal situation

 Large experiment files are uploaded to the system

 Processing duration is recorded

 System crashes and Web UI crashes are recorded



Test Cases

 User testing

 Users are provided data files for simplicity

 Users are instructed on how to write the configuration file

 Integration testing

 An experiment is processed using the web UI.

 If the results are satisfactory the response is recorded and stored for the Python test client

 Also the results of the history and details screens for 4 predetermined experiments are 

recorded and used for validation

 Stress testing

 Limits are set on the amount of ram and storage in a virtual machine



Test report

 User testing

 Users provided positive feedback on the usability experience of the platform

 They felt the requirements were met

 They suggested future improvements of

 Improving UI style

 The ability to record data

 User authentication

 Extend processor code to use multiple detectors as apposed to simply 2



Test report

 Integration testing

 Stability issues arose when supplying nonstandard data

 Incorrect type formatting or broken XML config files

 This was fixed by blocking nonstandard requests and validating config files

 Stress testing

 Various performance issues arose during the stress testing phase.

 Files larger than the available storage capacity caused the system to crash.

 File sizes are now limited to 1 Gb smaller than the available capacity

 Large amounts of graphs on the history tab of the UI cause the front end to crash

 Nictitating the need for pagination of experiments



Conclusion

 During the development of the DAQ stack platform an issue was discovered in 

the PAASS-LC platform which caused it to crash when supplied with our data. 

This was brought to the attention of the PAASS-LC developers and has since 

been rectified

 DAQ STACK is a platform for the simple processing of experiment data. 

 It can be easily extended upon given its modern language use and well-

structured code base.

 Integration Testing provides future developers with a means of discovering 

faults they may have introduced into the code base


