
Teaching Statement
Prof. Bill Tucker

submission that earned Faculty Excellence in Teaching award to senior academic in Faculty
of Natural Sciences, UWC, 2018.

last revised Sep 2020

Students’ needs
During my years at UWC, I have seen a technical shift in the capabilities, and thus the needs,
of the incoming Computer Science students from a standard bell curve distribution to an
inverse bell curve that I call the ‘Gini curve’ that clearly separates the ‘haves’ from the
‘have-nots’. Whereas most incoming students had likely not seen a computer 10-15 years
ago, currently half of the 1 st year students pitch up with their own laptop and the attendant
computer literacy skills that accompany owning such a device. The other half displays
paucity in computing background similar to the majority of the students 10-15 years ago. I
usually enquire about the use of laptops and mobile phones with a simple show of hands. Due
to my assessment techniques (see below), I also see this Gini-like spread of technical
capabilities manifest in terms of written and programming performance.

However, no matter which side of the ‘Gini curve’, almost all of the students suffer from poor
communication skills. As a native speaker of English, and as one who has more than 40 years
of teaching experience, having begun teaching English as a foreign language as a teenager
living in Taiwan, I am painfully aware of the dreadful English skills across the board:
reading, writing and speaking. My assessment techniques (see below) are meant to
simultaneously identify and address both technical and language skills because, based on my
own experience in both postgraduate studies and in industry, the combination of the two
comprise the key to any Computer Science student’s future.

By the time students get to Honours level, the ‘Gini curve’ appears to return to a normal
distribution (probably because only the best continue at Honours level, roughly 20%). I
continue to emphasise both technical and language skills at postgraduate level where, for
example, Honours students present a year-long project four times throughout the year to the
department, in both a verbal presentation and a written report; each time also pre-presenting
to the research group, and supervisor(s). Thus we are continuously able to assess and help
improve written and spoken communication skills. We continue to do so at MSc and PhD
levels, too, moving on to submitting work-in-progress papers, posters, and papers published
in accredited national and international conference proceedings (see publications listed in my
CV and Google Scholar as evidence that this is working well, and below shows the header of
a paper published at IST-Africa as a result of my Honours ICT4D course). We often emulate
the peer review process in house, in courses and in research seminars, because all Computer
Science conference proceedings submissions are peer-reviewed, and thereby serve as
preparation for subsequent submission to accredited conferences and journals (see Figure 1).

Figure 1: Paper published from the 5th iteration of an ICT4D Honours course project output.

Moving students from a 3-year BSc degree to postgraduate studies, we lose 75-80% of our
students to industry due to financial pressures; as understandably, most come from poor and
disadvantaged backgrounds. These students leave varsity to get a job as soon as they can. I
strongly encourage a 4 th year to ‘cement’ skills in a professional context, to enable students to
gainfully enter the workforce with a stronger skillset and/or to pursue advanced postgraduate
studies. There are several ways to do this. Firstly, with funding (more on this later). In the
classroom, though, I sometimes use programming exercises at 1 st year to project income
based on various degrees, entry-level salaries (based on communication with my graduates)
and annual increases. I also show these results to third year students to remind them, at least
in part, financially, why they should get an Honours and/or MSc degree. Secondly, I
constantly integrate research activities, e.g. Zenzeleni and SignSupport, into undergraduate
and Honours courses to expose students to applications of the basic concepts they are
learning in class. Thirdly, due to my industry experience in the American dot com boom of
the early 90’s, and long term corporate research funding and collaboration in South Africa
with Telkom, Cisco, and Aria Technologies, I am also able to integrate a contemporary South
African corporate professional experience into my lectures, exercises and postgraduate
activities. Finally, through my research group’s software development with free and open
source software (FOSS), I am also able to integrate FOSS mechanisms of software
development into courses and research activities. We also publish all of our research as Open
Access via the UWC Research Repository, making both the software and the outputs
available to all.

I am grateful to have had long term THRIP funding which allowed bursary payments to
Honours students. We had been paying Honours students R20k/annum since 1999 whereas
the NRF only upped its Honours support from R8k/annum much later on. We were able to
‘top up’ NRF bursaries, allowing students a 50% increase of their NRF bursaries tax free,
with no strings attached, as our students often quality for Scarce Skills bursaries. For the
promising Honours students that we are able to retain after a BSc, we saw an almost 90%
continuation to successful MSc studies for many years, also in part because we fund them
amply with soft (restricted) funds, both South African and foreigners alike (note, this was
written in 2018, and the situation, especially with covid, has changed and foreigners battle to
get financial support, so we must be creative).

Teaching and learning
My approach, at both under and postgraduate levels, is based on learning by doing, aligned
with the notion of authentic learning. This is a transmission view to teaching and learning,
and is not passive at all. I have been employing situated ‘learning by doing’ techniques since
my early days of teaching English in Taiwan: to community college students preparing for the
TOEFL, to business people needing English to conduct business with foreigners and to
children in a dual language (Chinese/English) kindergarten. In each case, my approach was
based on situated conversation, reading and writing in English with an emphasis on two-way
conversation.

Throughout my undergraduate studies, I did not once study or cram for a final exam because
I attended class regularly and did assignments on time. At the University of Alberta and then
at Arizona State University, I experienced a wide range of teaching and learning techniques
as a student. Subsequently, I adopted the techniques from the only postgraduate course for
which I received a B. I got all A’s in Computer Science from the very start. In my opinion, I
learned the most in the single course that caused me the most grief. It was a ‘learning by
doing’ course, writing an operating system from scratch in assembler. When I came to UWC,
I also brought with me the ‘learning by doing’ approaches gained from six years of industry
experience in a professional software engineering environment that stressed design,
documentation, source code control, rigorous debugging and testing, and performance
profiling; exactly for what that tough operating systems course had prepared me. Now, after
more than 20 years of university teaching, learning and conducting research, I still follow that
same approach, and still keep in touch with Emeritus Professor David Pheanis who taught me
this way. Needless to say, I have adopted his techniques for my own purposes, and the UWC
environment (and kept in the loop the entire time).

My main approach to Computer Science education is programming, and more programming;
alongside documentation and more documentation. My approach is distinguished in that I
insist that a program must work perfectly, and be verified automatically by code I have
designed, before it is marked for internal and external documentation, i.e. on written English
in terms of content, structure, format, spelling and grammar. This sometimes perplexes
students (and other lecturers) as students are most often awarded partial marks for partially
working code. I do not. If code does not work as specified, e.g. only passes a total of 999 out
of 1000 test cases, a student receives 0 marks, not 99%. Working code, e.g. passing all 1000
test cases, is a pre-requisite to marking the documentation of the code that describes what the
code does and how it is done, in technical English. In the ‘real’ world, this is the norm, as is
version control, testing and debugging, and performance profiling. These activities, in
addition to authoring user guides and websites in English, are ‘tools of the trade’ that I insist
that students learn by doing, and thereby award marks for these tasks above and beyond the
task of programming. In the ‘real world’, if code does not work properly, no one will buy it;
and in the academic world, if code does not produce results, it is difficult to get a degree
and/or publish. I also only use continuous assessment (see below) and refrain from giving a
final exam whenever possible. If I must give a final exam, e.g. for 1 st years, it is a
programming rather than a written exam. I am not a fan of supplementary nor special exams.
I feel they waste so much time, in fact up to 62 academic days per year at UWC; time that in
my opinion would be better spent having an additional semester to provide more authentic
learning opportunities to students that come to university under-prepared, e.g. to retake
‘killer’ courses (so we avoid the cross-year clashes and extended enrolment) and also to take
additional courses.

Figure 2: The flipped classroom: students must read material before coming to class.

Throughout my entire teaching career, I have employed the ‘flipped classroom’ (yes, the
photo in Figure 2 is intentionally flipped) approach where students must prepare material
before coming to class. There are two methods to accomplish this: with undergrad (and some
postgrad) courses, I use random pop quizzes (described elsewhere). For the Honour ICT4D
course, where students read 2 papers per week, they must submit a one page structured
summary before that week’s seminar on the topic. This builds an incrementally iterated
approach to writing summaries, honing skills that can then be passed on to iterations of a
class project, consisting of 4 cycles of presentation, demo and paper (see Figure 3 below).
This is a form of scaffolded continuous assessment, where every assessment builds on the
previous one. All assessments count equally so as not to put all the emphasis on the final
product, but the process.

Figure 3: Scaffolded continuous assessment via incremental iteration of all submissions, in this case,
presentation, demo, paper and weekly summaries. In this semester-length Honours ICT4D course, nly the 4th
iteration of the prototype is coded.

The differences in T&L approaches within my department are often stark, and for that I
believe the students should be grateful. Students must be exposed to different methods of
instruction and assessment, for I have also benefited throughout my education and industry

experience from a variety of approaches and methods. We should be teaching students how to
learn to program, not how to program; and that requires a mixed bag of tools.

Curriculum development
In Computer Science, there is a curriculum recommended by a combined ACM/IEEE effort.
The ACM and IEEE Computer Society are considered the two most prestigious professional
computing bodies, both based in North America. Their computing curriculum
recommendation puts us in a very difficult situation as it is intended for a 4-year degree, and
we only offer a 3 year BSc in South Africa. As my colleagues can attest, I am very vocal at
our annual curriculum development meetings where we consider adapting our curriculum to
follow the ACM/IEEE recommendations while at the same time acknowledging the reality
that most of our students leave with a 3-year degree that often takes longer than three years,
not including those enrolled in the four year extended programme, which spreads the first
year over two years (and note, there is no Computer Science in the first year of the extended
programme). We do not give near the same number of courses as our peers in the North. Nor
are our students allowed to take courses outside the Faculty, which is a requirement in the
North.

I feel we should be reorganising existing coursework to ensure that our 3 rd year BSc students
leave with at least an introduction to the recommended topics within the constraints of the
module system given to us. For the latest version of the ACM/IEEE recommendation,
recently revised, we must include more coursework on security; distributed and parallel
processing; and ethics and social issues of computing. I have already reorganised 3 rd year
operating systems and networking courses that were originally designed to ‘hook’ students
into staying on for Honours to complete the courses (because most textbooks are designed for
a semester course and we only offer term courses, so term 1 would be given, for example, at
the end of the 3 rd year with the follow up in the first term for Honours) so that the 3 rd year
course is more comprehensive (although more shallow). I also suggested that we move the
industry-based Cisco CCNA networks course to the evening for revenue generation, and
return to a more academic orientation with computer networks (we have done the latter, and
only recently, the former). I have also suggested that we synthesise distributed computing
into the operating systems modules, and security into the computer networks. We introduced
an ICT4D course at Honours level in 2012, and in 2017 it was made a permanent addition to
our curriculum, and it includes ethical and social issues of computing, as well as open source
software engineering and an introduction to research methods (we do not presently have such
a course). However, due to the size of our department (8-9 permanent academics), lecturing
eats much into our research time. That’s ok. In addition, I have also suggested that a
combined networks and operating systems course could easily follow on the combined
database/software engineering/human computer interface grouping in terms of an extended
year-long programming project at third year level. These ideas are still under discussion
within the department.

I was responsible for redesigning the Honours curriculum and project structure in 1999, to
reflect the Software Development Life Cycle (SDLC) best practices by doing it , and we
continue to successfully use it to this day (see www.cs.uwc.ac.za -> Honours). Actually, I feel
it must be updated. It has not changed since 1999! For example, in 2020, after I had done this
for several years, the department finally agreed to have Honours students iteratively write a
10 page paper on their project (see Figures 1 and 3 above; instead of a 60-100 page report.
Yet, the remainder of the Honours programme remains untouched for more than 20 years!

http://www.cs.uwc.ac.za/

I am also quite adamant that we further adapt our curriculum to train Computer Scientists in
Africa for Africa, and not just for the West, as is typically done in Computer Science
departments across the country, and the world. We are actually training our students to work
in the USA, UK and Australia rather than in the so-called ‘developing world’ which we
inhabit. Our textbooks, even the International Editions, come laden with Western (mostly
American) preconceptions, terminology and tacit cultural assumptions that are not necessarily
appropriate for our context. For example, the African notion of Ubuntu is very different from
the individualist competitive paradigm that comes embedded in our textbooks and our
application of them within our courses. As an immigrant to South Africa, I have bumped my
head against these issues, in addition to the very different marking scale, e.g. in South Africa
an ‘A’ is 75, whereas in America 75 is a 'C', or average. I think we shoot too low. Students
just want to pass, i.e. get a 50, not excel. Regarding Ubuntu, I often take an extremely
flexible approach to group work, allowing students to choose their own groups, and even
change group membership at any time, and actively encourage students organised into groups
to discuss assignments freely and openly with each other, even between groups. However, I
also stress the ethical considerations of copying work, getting solutions from the Internet and
obtaining pirate pdfs of textbooks; as far as I know, I am the only person in the department
that asks students to sign a version of the UWC “plagiarism declaration” modified for
Computer Science. However, in the ‘real’ software development world, whether corporate or
open source, communication is ‘king’, especially with respect to communities in Africa.
Thus, I feel we need to adapt the Western ACM/IEEE curriculum for African students to link
their studies to community needs, and to solve tasks with a thoughtful combination of African
and Western approaches, for I feel my students have a foot in each world, and can benefit
from that, particularly for our context. Even when assignments or peer reviews are done
individually, I allow and even encourage discussion between students. This is natural and
beneficial for them to learn from one another.

To such ends, I frequently edit a given text’s examples, both in presentation and in
programming examples and exercises, with localisation, e.g. rands instead of dollars and
“bond” instead of “mortgage”. These are simple ways to situate learning and enhance
understanding (of examples). I also take pains to craft exercises that are directly relevant to
students’ lives, e.g. to project bond interest with and without overpayment and other exercises
to handle the vast amounts of money our graduates earn upon graduation because their
parents often lack that experience and thus cannot pass it on to their children. We also have
exercises that compare mobile phone packages, voice over IP vs. standard voice, SMS vs.
WhatsApp and even implementing the South African tax code. I also attempt to weave the
current political and ICT policy issues into lectures, e.g. before 2005 when voice over
Internet Protocol (VoIP), e.g. Skype, was illegal; or handing out the recently gazetted ICT
policy document and asking 1 st year students to comment on it as a marked reading/writing
exercise. These are yet other ways to situate learning, especially in a South African context.

To take this localisation even further, I have for several years now advocated that we start
programming on mobile phones. I mean programming for and on mobile phones. Mobile
phones are essentially tiny computers, and are ubiquitous in Africa, much more so than in
America, for example, where a smart phone was once far and few between while ubiquitous
in my classroom. Many of our 1 st year students have advanced smartphones, and even if they
do not, they can group themselves together with someone that has one, or at the very least,
can use a simulator on a PC or server in the department. I have started on this path by
introducing graphical user interface programming exercises at first year level. Before I started
doing that, we only introduced students to GUIs at 2 nd , and now 3 rd , year level, which is in my

opinion far too late; and flies in the face of ubiquitous GUIs on phones, tablets, laptops, PCs
and servers. We need to move with the times, and also with our continent, to provide relevant
examples for students to hone their computing skills, on mobile devices in particular.

Assessment
I use only continuous assessment, mainly in three forms: pop quizzes, design exercises (for
pracs), and programming pracs (however, not done during prac time, but on their own time,
see below) for undergraduate programming classes, and summaries, papers, presentations,
demos and class participation for Honours classes (see Figure 4 below).

Pop quizzes are 10-minute individual assessment events that are handed out randomly,
without notice (to achieve the flipped classroom). I usually give them at the beginning of a
class to encourage timeliness, and make sure they come to class prepare to absorb and reflect
upon the material. It still astounds me that even when pop quizzes become de rigor, students
often still arrive 30 minutes late, or later, to sign an attendance roster and depart out the back
of the hall, because the pop quiz also doubles as an attendance data collector, although by the
3 rd year, the students ‘get it’. I tend to drop the two (or more) lowest scoring pop quiz marks
out of about 12-15 quizzes per semester. There are no make-ups. I always discuss the pop
quiz answers immediately after collecting them from students, and use it as a vehicle to
manage the pace and learn exactly where students are excelling and struggling. Because each
pop quiz is short, we can mark them quickly and make them available to students for nearly
same-day feedback. I also use the pop quizzes to deter cheating and copying: we often
circulate several versions of the same pop quiz. All versions of the pop quiz look the same,
and address the same topics in slightly different ways. That way the answers to the ‘master’
pop quiz are relevant to all versions, and when marking, we can easily tell who has copied
from whom. This deters plagiarism quickly and effectively with only a small extra effort on
our part. Note that I have exposed plagiarism in every single course I have ever given at
UWC. We have an internal protocol for dealing with plagiarism before sending a student to
the Proctor (which follows on the plagiarism declaration form mentioned above, and involves
an intermediary step of admitting to plagiarism and only the 2 nd instance is forwarded to the
Proctor with all 3 documents as evidence).

Figure 4: Marking is for continuous assessment, and lowest marks are dropped in all categories to allow for
unforeseen circumstances, e.g. death in family, illness, missing a class, etc.

Programming (and non-programming) pracs/assignments are handed out on a weekly basis,
and for programming, each with its own preliminary design exercise (also marked). For first
year students, we expect the students to complete the assignment in the laboratory at set times
(although they can work on it anytime – all assignments are given at the beginning of the
week and pracs are scheduled Wed, Thu and Fri), and for 3 rd year and Honours students, we
expect students to complete the assignment on their own time and submit to an automated
system on our servers (VPN access enables off campus access even when the campus is shut
or locked down). In both instances, this builds valuable time management skills. Until 2015,
all assignments were done in teams: 1 st years program in teams of 2, 3 rd years in teams of 3 or
4 and Honours in teams of 2 again. In 2015, I opted to go for individual submissions, even at
1st year, to deter relying on someone else to program. It turns out that one person per team
does all the coding, and the others just coast. I found no changes in the marks (or in cheating
prevalence); thus I surmise that more students learn to program on their own. Programming
assignments and their rubrics (on the syllabus) are made available on the website of every
course. I used Piazza for many years, and since 2017 have begun using iKamva which is
based on the Sakai platform (see Figure 5 below). Now, especially with covid, online has
become more than an online dumping ground for material. Yes, it still holds multiple forms of
media; but it also contains a calendar, announcements, platform for online quizzes and
assignment submission, marking and feedback; and much, much more.

Figure 5: Online course management systems have become de rigour for SA universities. Note that my
Honours ICT4D course had been online for 3 years already, and very little changed for covid. Other courses
of mine had used Piazza before then, and since the late ‘90s, I only accepted programming assignment
submissions digitally, and they were fully and automatically tested with scripting tools (first shellscript and
later Python) before documentation was marked.

In brief, I code the assignment myself to exact specifications that I make available to students
online, along with a server-based ‘driver’ that compares the output of my code to student
code, given the same inputs. Course tutors validate my code to ensure that it is correct. The
inputs are collected in the form of ‘testfiles’ that can contain up to 100’s or 1000's of different
forms of input, both good and bad, that the code must deal with. The principle is simple:
there is no one way to code a given solution, as programming is as much an art as it is a
science. However, the code must produce specific output given specific input (the science!). I
only start to mark coding style and efficiency from 3 rd year up. For all levels, however, we

award marks based on various types of documentation: high level (module/class), low level
(function/method) and code level; once a student solution ‘passes the driver’, i.e. produces
exactly the same outputs as my solution, given the same inputs (although it can be
implemented any way they like). At various times, I also award marks based on the use of
source code control, debugging techniques (e.g. debug vs. trace), profiling (number of CPU
ticks during execution) and even size of the executable (important for mobile and embedded
applications); however, over the years I removed these requirements because students simply
didn't do them – at UWC, the majority want 50% not 100%. This is a cultural mindset that I
find extremely challenging to combat and change; and we are starting to win (there is
anecdotal evidence of a culture shift happening in our department which I believe is mostly
tied to the momentum of the postgrad programme, established in 2000).

At Honours level, I alternate programming exercises with written and verbal assignments in a
‘mini conference’ format. The process could be as follows: write a 2-page paper and give a 5
minute presentation to the class, then expand the paper and presentation based on feedback
(from fellow students and myself) to 4 pages and a 10 minute talk with 5 minutes Q&A,
respectively, and then a final version back to 2 pages and 5 minutes, respectively. I designed
it this way to stress the integration of feedback into the process, and to contrast with the
‘single shot’ paper typically assigned in other courses. Because everyone reads everyone
else’s paper, it also introduces the students to peer review. Note that for the 3rd year OS
course, we also perform peer review between and within groups on program design, e.g.
UML, and implementation (code review). These processes are prevalent in industry and the
open source arena, and our students need to learn how it works; and get and give valuable
feedback using the ‘sandwich’ method: 1) praise, 2) critique and 3) offer suggestions for
improvement, i.e. a way forward. This process is iterated in order to factor feedback into
successive efforts. And feedback is critical: that it be constructively critical, and timely (see
Figure 6).

Figure 6: Feedback is crucial; not only for the student but for me to get a feel for the cadence of the course
and its delivery and assessment. In the case of this feedback, it shows that multiple people review a student’s
written submission for the Honours ICT4D course, thus emulating genuine peer review.

There is no final exam for any of my courses anymore. I must point out that continuous
assessment as described above is much more time consuming than a single marking of a long
final exam that does not, in my opinion, encourage the student to do anything at all except
cram for a single assessment. That said, I am not opposed to combining continuous
assessment with a final exam, and I did this from 1998-2002. However, after returning from
sabbatical in 2005, I have avoided final exams as I feel that pure continuous assessment does
a much better job with respect to situated and authentic teaching and learning, particularly in
setting expectations for a course and its goals (to learn something by doing instead of just
aiming to pass an exam) and also relieves me from the double burden of both continuous and
final assessment. Unfortunately for me, this approach is somewhat non-traditional and not
catered for by UWC's marks administration system, and I therefore must be ‘creative’ to fit
pure continuous assessment into a system that does not actually allow for it (even today with
100% remote teaching and learning). However, many around me are now following in my
footsteps since 2015-16 with #FMF, and since 2020 with covid. Note again, I started doing
this, and mostly online, since the early 2000’s.

Ins�tu�onal, administra�ve and commi�ee work on teaching and learning
Since 2010, I had volunteered every year to serve on the Faculty T&L committee. However,
it was decided that it was more strategic for me to continue serving on the Faculty Higher
Degrees committee to serve the department’s needs and so as not to overload my
administrative load so I may concentrate on maintaining the critical mass of research
activities in our department. I finally managed to join the T&L committee in 2015, and really
enjoyed the stimulation from other team members. That and attending T&L seminars forces
me to reconsider and reshape my approach to T&L, and for that I am grateful. I was asked to
step down from the T&L committee in 2019 after winning the Teaching Excellence award
because that committee is considered a vehicle to win that award (which is not the case), and
my methods challenge the plasticity of research over teaching (instead of them reinforcing
one another) practised by most of my colleagues. Only recently, the T&L office asks me to
give talks at their events, and has been well-received.

Scholarship of teaching and learning
As started above, my approach to T&L is authentic and situated; and iteratively evolves
incrementally, aligned with experimental empirical Computer Science where we iteratively
make small incremental improvements to algorithms and prototypes to achieve a given
objective based on observable results (these are the version numbers you see associated with
all types of software). I have co-authored an article based on ‘learning by doing’ in the
African context, in terms of both courseware and research efforts, because our MSc system
markedly differs from the course-based MSc prevalent in much of the world, several years
ago with colleagues from UCT and the bridges.org NGO. The paper was accepted for a
special issue in the Information Technology and International Development (ITID) journal,
and then the special issue did not materialise. At some point, we should probably revise and
submit the article locally to SACLA or SAICSIT.

My work with the Deaf community was featured as a case study in perhaps the world’s most
popular textbook on human computer interaction (see Interaction Design 3 rd edition), the
same textbook we use for our own HCI course. The case study, at least the extended online
version, was essentially an adaptation of one of the case study appendices from my PhD.

I wish I had more time to contribute to the scholarship of T&L but I find myself unable to
prioritise that given my heavy research load, e.g. an average of 12-15 postgrads per year, now
more than half are PhD students. I have years and years of data, handwritten notes per course
(in notebooks, one per course) of how processes have changed, to correlate with marks kept
in spreadsheets since 1998. I tend to give a course for 5-7 years and then move on to
something else. I insist on not teaching the same course for longer than that because I, too,
need to grow, and the processes are easily transferable between courses.

Professionalism of teaching and learning
My engagement with T&L structures has mostly been through my peers in the department,
and as from 2015, engagement with peers in the Science Faculty T&L committee. I was
appointed Blended Learning Champion for the department by our DVC Academic. At one
point, I asked to resign as e-learning champion because no one in my department other than
myself was using any form of formal blended learning. It’s only now, with a new HOD’s
edict that every single class should be on iKamva, that that has changed; especially with
covid. And for that I am also grateful, and not just because it pushed me to move from Piazza
to iKamva. I also use other forms of digital media to coordinate courses and tutors, e.g.
WhatsApp. I am constantly consulting my colleagues about this or that assignment, lecture or
demonstration technique. I also engage with my students formally by having them write a
simple course evaluation at the end of each module; and more recently continuous evaluation
to be able to react in agile fashion to ongoing and post-hoc course evaluations, e.g. having
lecturers take an entire 1 st year term class instead of alternating weeks, and in 2015 I even
relented and gave in to student pressure (after 17 years!) for partial marks for a programming
assignment that didn't work; albeit on my own terms: a program that works gives 50% and
the documentation the remaining 50%, i.e. only 50% is possible if the code doesn't work; or
quickly changing a scheduled lecture when a guest speaker can or cannot make it.

I have attended every Computer Science annual meeting since 1998 where we predominantly
engage regarding the curriculum at both undergraduate and postgraduate levels. I am most
involved with the postgraduate research, and even though I am only since 2012 in a senior
position, I have been the most senior de facto researcher in my department with respect to
volume of graduates, publications, funding and NRF rating. I also offered to take 1 st year
lectures from 2009-2015, which senior academics tend not to do. I enjoyed it immensely! I
am an advocate of using technologies in learning, for hardware, e.g. multi-vendor equipment
in the lab so that students learn principles rather than one vendor’s approach; and for
software, e.g. I use Facebook, LinkedIn, Google groups, WhatsApp and Piazza (and now
iKamva) on a regular basis to conduct both course and research activities with students. I am
a supporter of FOSS and encourage all of my postgraduate students to get involved with an
active online FOSS community, e.g. the mesh potato project with www.villagetelco.org
which has led to LibreRouter. To me, open source and open documentation, even open
hardware, is the ‘new’ way for Computer Science, and prepares students for both advanced
postgraduate studies and work in industrial, governmental and academic sectors. Our work
with Zenzeleni was recognised by the Mozilla Foundation (we came 5 th in the world in their
Equal Rating Challenge!). In my opinion, we should also probably be moving toward open
courseware, as well, e.g. the Open University programmes and Kahn Academy.

Evalua�on of teaching and learning
All of my 3rd year and Honours level modules are externally evaluated, and I meet personally
with examiners to discuss courses in detail, to measure up against myself annually, and also

http://www.villagetelco.org/

with respect to how courses are given and organised at examiners’ respective universities,
e.g. UCT, Stellenbosch and Georgia Tech. I also consistently conduct course evaluations with
students by asking the same three questions: What did you like about the course? What did
you dislike about the course? How would you change the course? (see the sandwich method?)
I read these, and make corresponding small adjustments each year. I make an effort to read
between the lines, e.g. when students complain about how hard assignments are, or how
unfair a pop quiz is, I know I am doing the right thing because I receive email after several
years thanking me for making my courses so difficult (sometimes I don’t even have to wait
that long), or for example when students complain about how I bring national politics into
discussions about computing principles, e.g. socialist vs. despotic process scheduling in light
of contemporary African politics, or even the use of social media in a politically responsible
way, e.g. the Arab Spring or #FeesMustFall, and now with the challenges of remote learning
covid. I encourage my students to engage with their world, in and out the classroom, and
often talk and joke about politics during a lecture, yet more seriously engage them as to how
computing can be used in the political and socio-economic realms of our lives.

If I could, I would only give a course for 3-5 years and then move on, and apply techniques to
other source material. I would actually like to lecture courses I did not take as a student, to
widen my foundation knowledge. Even when I do take a course for a long period of time, e.g.
the operating systems courses, I try to avoid doing the same things in the same way every
year. Yet instead of making big changes, I make little ones. This is the way of experimental
and empirical Computer Science, to continually make small iterative changes to assess and
improve.

